

How to Production Plan and Control

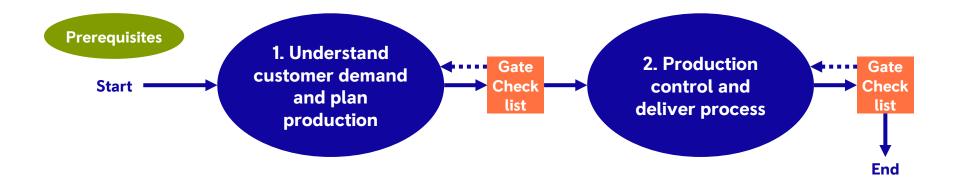
Value Chain Competitiveness (VCC)

Version: 2

February 2020

This information is provided by Rolls-Royce in good faith based upon the latest information available to it; no warranty or representation is given; no contractual or other binding commitment is implied.

How to Production Plan and Control

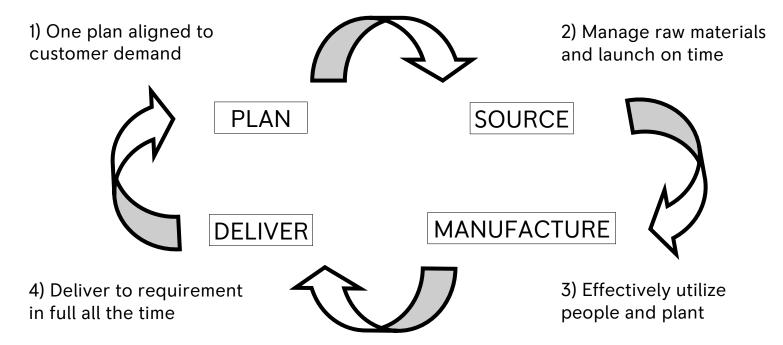


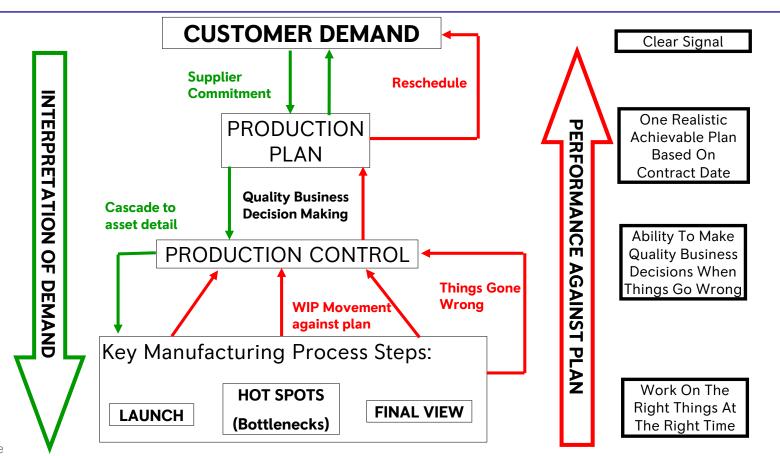
Scope

Objectives & Principles

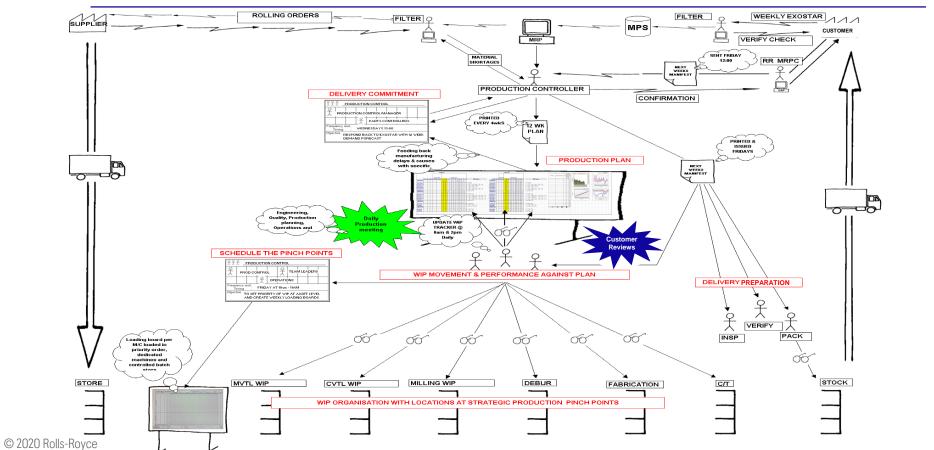
This 'How To' will enable you to:

- Understand and engage in simple practical Production Planning & Control (PP&C)
 activities
- Analyse the process of taking the customer demand into a system of work through the facility
- Manage production plan with cross functional communication to achieve business needs
- Plan and prioritise material at asset level
- Visualise and organise WIP
- Track WIP movement through to delivery


Objective and Principles


 To provide simple techniques to improve & control the material flow around the production facility

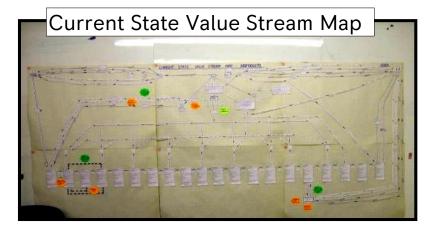
Objective and Principles



© 2020 Rolls-Royce

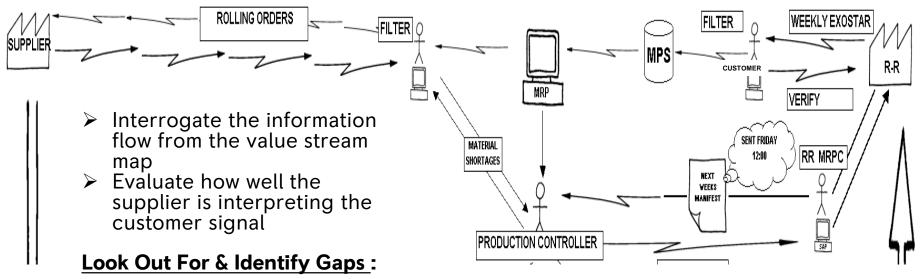
Objective and Principles

Prerequisites



Knowledge of:

- Diagnostic Process.
 - Load & Capacity
 - VSM & Lead Time Analysis
 - Signal Stability
 - Visual Management
 - Arrears information


Baseline Current State

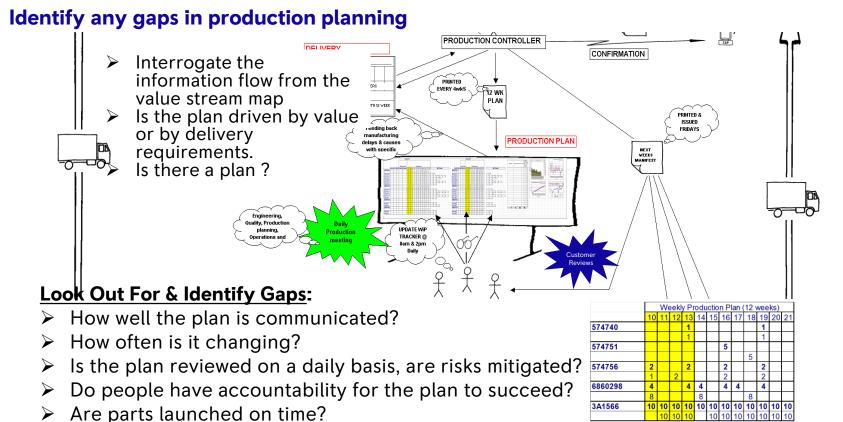
- ➤ How well is the customer demand interpreted?
- ➤ How good is the communication of the customer demand through the facility?
- ➤ How well is performance managed against customer demand?
- ➤ Bottlenecks identified

Understand communication links with the customer

- Main source of communication with the customer
- Business system (MRP) is appropriately maintained (eg. routings & lead-times)
- Management of 12 week production plan
- Material Requirements Planning (MRP) management process
- Cross functional team working

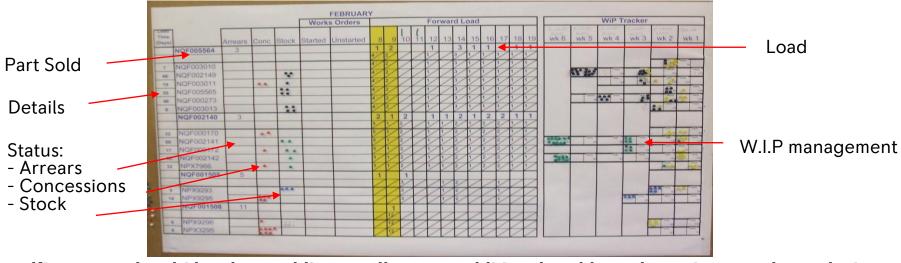
Identify load and any arrears

	LOAD PROFILE																
Sum of Open Qty	pen Qty Week ▼																
Material -	10	11	12	13	14	15	16	17	18	19	20	21 (Grand To	tal			
6860298			7											7			
3A1566	10		10	8	10	10		10		10		10		78			
6A2850						1								1			
AG59197A				1										1			
AX66111							1				1			2			
AX67802					2				7					a			
BR76625A						3						ΛГ		۸۵۵		СТ	-
BRR24558		5	5	5	5	5	5		5	į		Αr	RRE	483	L	S I	
EU67093	6			7					6				51 21/03/2008		1102	ENGB	1
FK13249					1							RUB5069 UL33980		19/06/2007 26/06/2007		SPSM	1
FK20002	3	4	3	1	2	3	4	4	3			U61964		18/09/2007		SPSB	1
FK20003		7	3	3	2	3	4	4	3			UL22313 UL22313		27/09/2007 16/10/2007		SPSD SPSD	2
FK20004	4	5		1	2			-	2	_;			08 26/02/2008 10 07/03/2008				1
FK24110	·	7		1	_	1	1	4	1				07/03/2008			_	1
FK24111		2		1	1	2	•		1				07/03/2008 08 26/02/2008				1
FK24112						2			1		N	QF0015	10 07/03/2008	23/11/2007	CBCC	RCV1	1
FK24599	3			3	2	1	1	3	2			QF00156 RUB506	08 26/02/2008 9 27/02/2008			RCV1 SPSM	1
FK26546	1			1		1	- '	3				RUB506	29/02/2008	30/11/2007	2103	SPSM	1
		1		- 1		- 1	4						10 07/03/2008 7 25/02/2008			RCV1 ENGB	1
FK26886	1	- 1	4		4	1	1	4		—	N	QF0015	08 26/02/2008	07/12/2007	CBCC	RCV1	1
FK29332	_		1		1	_	1	1					07/03/2008 05 26/02/2008				1
FW34102	6			5	5	5	5		5		N	QF0015	08 26/02/2008	14/12/2007	CBCC	RCV1	1
												QF0015 FK13249	04/04/2008	14/12/2007	1203	RCV1 SPSD	1
													05 26/02/2008			-	1


Forward Load split into weekly buckets

- Identify parts which are runners, repeaters, strangers & aliens
- Group part families
- Look for weeks with heavy/low demands across part portfolio
- Establish average weekly schedule line requirement

Arrears information retrieved



Manage problem parts

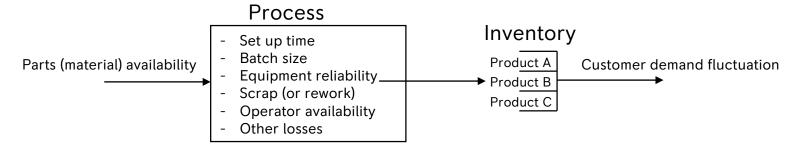
Visual management of part order status and problems (non-adherence to plan)

Kit parts and multi level assemblies usually cause additional problems due to increased complexity and the additional manufacture of detail parts.

- Highlights stock levels/status, order backmarkers, concession status and arrears
- Informs the requirement to launch, to Go-look-see and confirm the actual WIP status, and actions required / priorities to get back to plan

Gate checklist 1: Understand customer demand and plan production

- Customer information and demand flow understood, with opportunities identified for improvement
- ✓ Load and any arrears identified
- Production planning process understood, with opportunities identified for improvement
- Part order status visually managed with management process in place



Understand production control system aim

- A Production Control system should be designed to ensure customer requirements are always fulfilled
- To achieve this we need to understand the overall process chain capability and stability. The following factors may create the need for inventory;

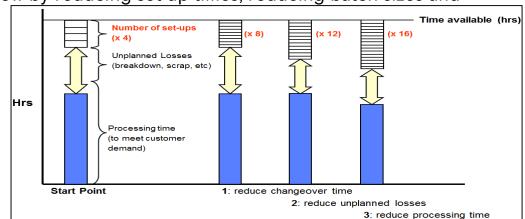
- Appropriate levels of inventory need to be held at relevant points in the manufacturing/ assembly process according to the current capability and stability
- For parts which have a frequent customer demand

Manufacturing lead-time = Quantity of WIP

Customer demand per period

• In the case of low customer demand parts, the quantity of WIP may become negligible, and in some cases it becomes appropriate to make-to-order

Understand production control system aim

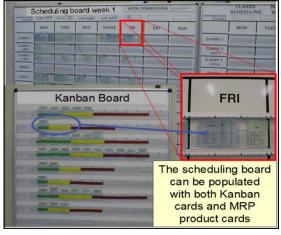

The benefits of shorter lead-time

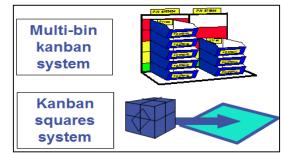
- Reduced inventory and associated costs
- Less inventory enables a simple visual production that is easier to manage
- The challenge is to improve our capability and stability, so that lead time and inventory can be reduced without jeopardising on time delivery to our customers by
 - simplifying process flow (eg. dedicating parts/part families to machines)

· progressing towards single piece flow by reducing set up times, reducing batch sizes and

reducing unplanned stoppages

 To move towards single piece flow we need to reduce batch size (ie. increase number of changeovers), whilst achieving customers orders





Understand production control system aim

Understand how Kanban (pull) works and when it is the appropriate control technique

- A Kanban (Japanese for a pull) system of stock replenishment in a capable/stable environment has many advantages
 - inventory reduction
 - a simple operation using clear visual signals
 - low administrative cost
 - responsive to demand
- In a Kanban system the customer (internal/external) sends a signal to the supplying area – eg. a Kanban card, red/amber/green level indication, empty square
- All these techniques replenish stock with a pre-determined "Kanban quantity" as the stock is consumed
- The total number of Kanban's for each part is pre-set and adjusted at intervals to reflect changes to expected volumes and product mix

Look Out For & Identify Gaps:

- How well is the segregation and storage of WIP around the facility?
- Is asset planning effective?
- > Is asset performance reviewed or understood?
- Look there overproduction, large/variable batch sizes

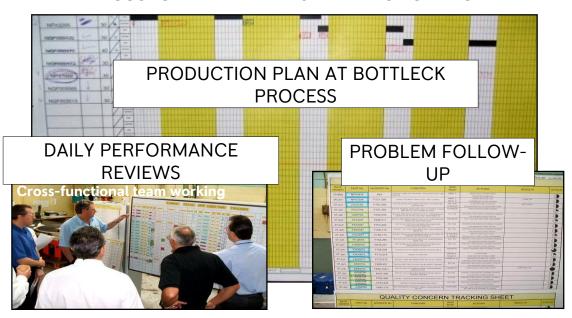
- How are work queues prioritised?
- Are fixtures stored locally and easily identified?
- How well is the labour deployed?
- Are assets seem to idle for long periods of time?
- ➤ How well are the sub-contract providers controlled?

Asset planning at the bottleneck

• The process should be designed such that the bottleneck operation is kept running (i.e. so that work is always available at the process bottleneck; and such that thereafter work is quickly carried away from the bottleneck process).

Before the bottleneck:

- Plan to hold inventory so that the constraint machines will not lose time waiting for work –
 typically it is necessary to size the buffer to allow for variations in cycle time between one part
 and another (the bottleneck machine will not always be the slowest operation for every part) and
 for interruptions on earlier machines (for example due to breakdowns)
- The inventory may be held immediately ahead of the bottleneck machine or may be held ahead of the group of machines if the earlier operations in the group are reliable and always faster than the constraint operation



Asset planning at the bottleneck

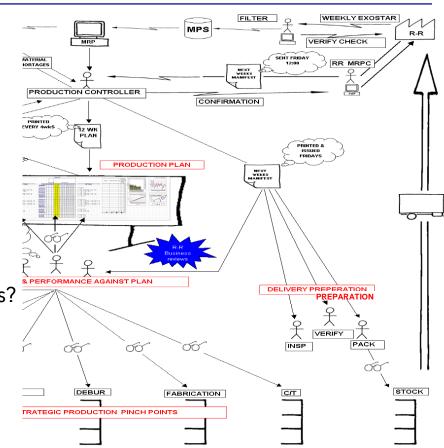
TAKE CONTROL AT THE BOTTLENECK, PLAN THE ASSET FOR A WEEK IN LINE WITH CUSTOMER DEMAND & MAXIMISE CAPACITY

- ➤ Controlling batch sizes
- ➤ Setting order & priorities
- ➤ Dedicating parts to assets
- ➤ Deploying labour
- ➤ Understand performance against plan
- ➤ Review performance
- ➤ Manage problems



Organise and visually control work at the bottleneck

- Segregate WIP and identify storage locations
- Consider material movement, safety & potential damage risks
- Limit space to requirement and implement control system
- First-In, First-out (FIFO) is a control mechanism used to ensure work flows through a process in a specific sequence
- FIFO Lanes provide a visible mechanism for defining which part(s) to work on next



Delivery process

From the information flow from the value stream map, what is the delivery preparation and delivery process?

Look Out For & Identify Gaps:

- How good is the logistics delivery process?
- What is the actual performance vs. plan?
- > Are parts awaiting delivery organised?
- How are parts controlled from stock?

Gate checklist 2: Production control and deliver process

- ✓ Production control aim is understood
- Production control system is analysed, with opportunities identified for improvement
- Asset planning and management in place at the bottleneck
- Work is visually organised at the bottleneck with appropriate control in place (eg. FIFO)
- Delivery process is understood, with opportunities identified for improvement