

Appendix 1 Finance tour Modelling help and Q&A discussion

Introduction

A subset of our finance team

Arvind Balan

CFO Civil Aerospace since 2022

14 years at Royal Dutch Shell, including most recently as Regional CFO based in Singapore. Before Shell held roles at Citigroup, Arcelor Mittal and HSBC

Andy Banks

Head of Civil FP&A since 2018

Over 20 years at Rolls-Royce, including Head of Group Reporting, Forecasting Transformation Project Lead, and Purchasing Finance Manager

Peter Lapthorn

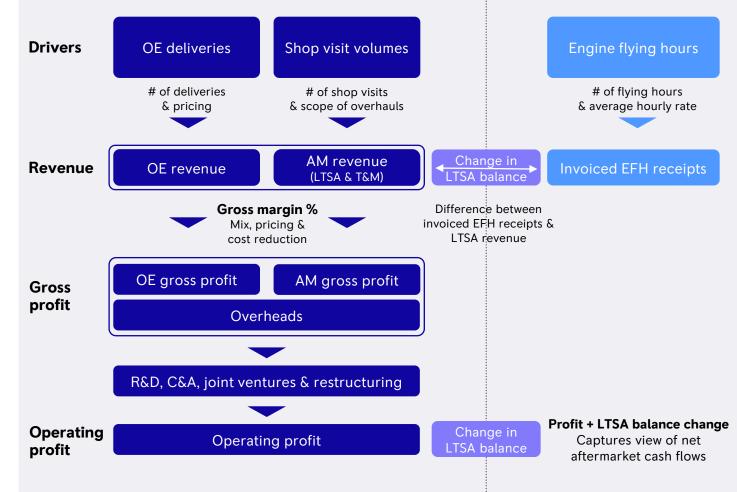
Head of Group Analysis & Insight since 2021

Previously worked as investor relations manager at Rolls-Royce (2019-21), and Aerospace & Defence equity research at Goldman Sachs

Guidance summary

Material improvement in performance

Guidance summary	2019	2021	Medium term
DRIVERS			
Engine deliveries (large & business engines)	729	309	Mid teens CAGR
Shop visit volumes (large, business & regional engines)	1,554	953	Low double-digit CAGR
LTSA engine flying hours (large, business & regional engines)	19.4m	10.3m	Approaching 2019 levels
FINANCIAL			
OE revenue	£3,246m	£1,611m	Low teens CAGR
Services revenue	£4,861m	£2,926m	High single-digit CAGR
Total revenue	£8,107m	£4,536m	Low double-digit CAGR
R&D charge as % of sales	5%	10%	~5%
Operating profit margin	1%	(4)%	High single-digit
Change in net LTSA balance	£754m	£66m	~£500m average pa
Trading cash flow	£419m	£(1,670)m	Comfortably exceeding operating profit

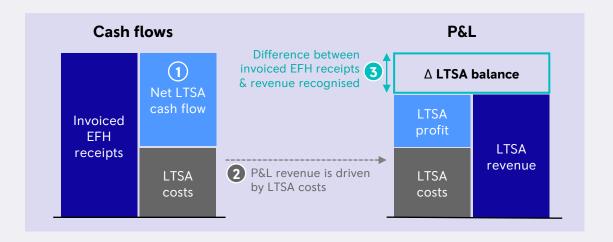


Operational & financial model

Our **operational drivers** of deliveries and shop visits drive the P&L, while flying hours are a large cash flow driver

The LTSA balance change is the connection between the P&I and cash flow

We are focused on key value levers to improve performance: cost reduction, time on wing improvement, pricing



Understanding the LTSA balance

The LTSA balance is the connection between profit and cash flow

Looking at **profit + the change** in **the LTSA balance** together provides a view of net LTSA cash flows and looks through the noise of any contract catch-up impacts

- 1 Cash is driven by flying hour receipts and shop visit costs:

 Net LTSA cash flow = invoiced flying hour receipts LTSA costs (largely shop visits)
- P&L revenue is driven by costs (costs are broadly aligned between profit and cash, minor timing differences):

 LTSA revenue = LTSA costs / (1 contract margin)
- The LTSA balance connects the P&L with cash flow. It represents any EFH receipts not booked in revenue:

 Change in LTSA balance = invoiced EFH receipts P&L revenue recognised

P&L profit and the LTSA balance change together therefore gives a view of net LTSA cash flows:

P&L profit + Δ in LTSA balance ≈ net LTSA cash flow

Cash conversion

Materially improved, higher quality cash generation versus pre-COVID

2019: £0.4bn including >£0.5bn working capital contribution and zero hedge close-out costs

Medium term: Comfortably exceeding operating profit with no material working capital

Performance beyond medium term driven by fleet growth & further product cost reduction

Operating profit

- Revenue growth at low double-digit CAGR
- High single-digit operating margins

Net LTSA balance change

• Average of ~£500m pa medium term

Investments (D&A, capex & leases)

- Very low level of R&D capitalisation due to product maturity
- Capital-light approach to services and spare engines
- Overall D&A modestly higher than investment and lease costs

Change in working capital

- Balance sheet improvement through COVID (e.g. invoice factoring cessation)
- · Broadly neutral working capital in medium term

Hedge closeout costs & other

- Reducing headwind from hedge close-out costs
- Gradual reduction in Group interest paid due to deleverage
- Modest level of provision consumption

Trading cash flow

Comfortably exceeding operating profit

LTSA example

Illustrative example of a single contract

P&L profit + change in LTSA balance = cash profit

		\$m	Year 1	Year 2	Year 3	Year 4	Year 5	Total
		Engine flying hours	100	100	100	100	100	500
		\$ per EFH	10	10	10	10	10	10
		Invoiced EFH receipts	1,000	1,000	1,000	1,000	1,000	5,000
Cash flow		Shop visit costs					-2,000	-2,000
		Other ongoing costs	-100	-100	-100	-100	-100	-500
		Total costs	-100	-100	-100	-100	-2,100	-2,500
		Cash profit	900	900	900	900	-1,100	2,500
		Contract margin						50%
		LTSA revenue (driven by costs)	200	200	200	200	4,200	5,000
P&L		Total costs	-100	-100	-100	-100	-2,100	-2,500
	A	P&L profit	100	100	100	100	2,100	2,500
		Opening LTSA balance	0	800	1,600	2,400	3,200	
Balance	B	+ invoiced EFH receipts	1,000	1,000	1,000	1,000	1,000	
sheet	ľ	- P&L LTSA revenue	-200	-200	-200	-200	-4,200	
		Closing LTSA balance	800	1,600	2,400	3,200	0	
	A	P&L profit	100	100	100	100	2,100	2,500
	B	+ change in LTSA balance	800	800	800	800	-3,200	0
	G	= Cash profit	900	900	900	900	-1,100	2,500

LTSA example Catch-up in year 4

In year 4 due to cost reduction efforts the estimated cost of the shop visit in year 5 on this contract reduces to \$1,500 (from \$2,000), improving the lifetime margin to 60%

Year 4 revenue is therefore \$400:

- \$250 due to in-year costs of \$100 at the new 60% margin
- Plus a \$150 contract catchup adjustment to bring historic revenue in years 1-3 to the new correct level (\$300 costs at 60% margin = \$750 revenue)

	\$m	Year 1	Year 2	Year 3	Year 4	Year 5	Total
	Engine flying hours	100	100	100	100	100	500
	\$ per EFH	10	10	10	10	10	10
	Invoiced EFH receipts	1,000	1,000	1,000	1,000	1,000	5,000
Cash flow	Shop visit costs					- 1,500	-1,500
1.011	Other ongoing costs	-100	-100	-100	-100	-100	-500
	Total costs	-100	-100	-100	-100	-1,600	-2,000
	Cash profit	900	900	900	900	-600	3,000
	Contract margin						60%
	LTSA revenue (driven by costs)	200	200	200	400	4,000	5,000
P&L	Total costs	-100	-100	-100	-100	-1,600	-2,000
	A P&L profit	100	100	100	300	2,400	3,000
	Opening LTSA balance	0	800	1,600	2,400	3,000	
Balance	+ invoiced EFH receipts	1,000	1,000	1,000	1,000	1,000	
sheet	B - P&L LTSA revenue	-200	-200	-200	-400	-4,000	
	Closing LTSA balance	800	1,600	2,400	3,000	0	
	A P&L profit	100	100	100	300	2,400	3,000
	B + change in LTSA balance	800	800	800	600	-3,000	0
	= Cash profit	900	900	900	900	-600	3,000

Appendix 2 Efficiency and Productivity Case Studies

Key drivers of value

Creating value from a growing and maturing fleet as the market for international passenger travel recovers

Retaining the operational efficiency and productivity gains delivered in 2020 and 2021 to drive margin expansion

MAXIMISE SERVICES

Market recovery

RECEIPTS

- Contract extensions and aircraft transitions
- Service scope and pricing

SERVICES COST REDUCTION

- Time on wing improvement
- Shop visit cost reduction

Reduce component and assembly costs

OE MARGIN

IMPROVEMENT

- Productivity and cost base improvement
- Purchasing strategy

BUSINESS AVIATION GROWTH

 Pearl engine programme ramp-up and OE cost reduction

- Less intense new product introduction
- Focus on cost reduction and product maturity
- Capital light approach utilising partnerships

15% Labour hours saving per shop visit

© Dassault

Horizontal overhaul method

- Disassemble and re-assemble the engine in a horizontal orientation rather than vertical
- This enables a more targeted workscope to be achieved helping to prevent creep
- On average we forecast a reduction in labour hours of 15%
- It also offers substantial operating cost reduction for MRO facilities of the future

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

£100k+
Saving per shop visit

© Dassau

Trent XWB-97 front cover plate re-use

- Established increased acceptance limits to address wear mechanisms that were causing front cover plates to be scrapped
- Minimising component level interventions is the most economic and sustainable way of reducing shop visit cost

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

40%Typical cost saving vs. fit new

© Dassaul

Intermediate pressure nozzle guide vanes repair

- We have introduced a suite of repairs of this component to avoid replacement with new
- The repairs are largely common with other Trent engine variants
- Complex repairs on high volume components are undertaken in a small number of suppliers
- Component repair reduces the demand on new hardware which in turn reduces the environmental impact of engine overhaul

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

30%Cost saving compared to new

© Dassau

Seal segment Direct Laser Deposition repair

- Innovative additive layer manufacturing method called Direct Laser Deposition to build up a matrix structure and re-create the sealing face
- Enables repair of seal segments which would otherwise have had to be scrapped
- Reducing material usage and improving sustainability and cost
- This type of repair is being deployed across the modern Trent engine fleet

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

x2 Turbine blade life

543
Trent TEN &
Trent 7000
engines in service

© Dassaul

Trent 1000 TEN & 7000 High Pressure Turbine Blade

- Incorporating latest technology
- Using simulation of fleet operations to inform design
- Component life increase to support overall engine time to refurbishment extension
- To be incorporated into new production and in-service fleets

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

>20%
Life limited parts extension

543
Trent TEN &
Trent 7000
engines in service

© Dassault

Trent 1000 TEN & 7000 Life Limited Parts extensions

- Improvement of our life limited parts >20%
- Use of actual versus generic operational data to provide further life improvement >50%
- Parts life increase to support overall engine time to refurbishment extension
- Reduction on material replacement cost at shop visit
- Improvement across all product types

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

+8% Temperature limits

543
Trent TEN &
Trent 7000
engines in service

© Dassaul

Trent 1000 TEN & 7000 enhanced temperature limits

- Engine testing to certify additional temperature limit
- Engine monitoring used to optimise maintenance
- Reduces temperature & engine deterioration to support time to refurbishment extension

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

+10% Time on wing

543
Trent TEN &
Trent 7000
engines in service

© Dassaul

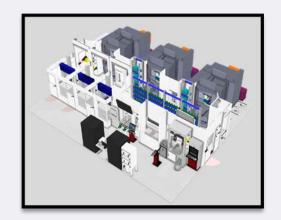
Trent 1000 TEN & 7000 better aircraft operations

- Optimising climb leading to 40% component wear reduction
- Next generation of engine washing (JetVac) improving time on wing by 10%
- Improves engine wear & deterioration to support overall engine time to refurbishment extension

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN IMPROVEMENT BUSINESS AVIATION GROWTH



Turbine Viper Grinding Case Study

100%

Capacity & **Productivity** Improvement in the same footprint with increased levels of capability & quality

New Turbine Blade Automated VIPER Grinding Cell

- De-commissioned 20 year old equipment and installed automated machining cell with scheduling software and other technology improvements
- Footprint reduction resulting in increased efficiency in terms of space and leveraging automation technology (6 new machines in the footprint of 3 old machines)
- Resulting in increased productivity and capacity through the use of multi-manning, utilising technology improvements and increased quality
- Other advantages include a demonstrated improved machining capability and reduced variation in product quality and new product lead time
- Roll out & decommissioning of further cells already planned and underway

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN IMPROVEMENT **BUSINESS AVIATION GROWTH**

Trent XWB-84 Engine lead time

>40 days to 27 days reduction in engine lead-time

£3.4m Engine inventory saving

Trent XWB-84 engine lead time reduction

- We have removed waste & non-essential work from the critical path of the engine
- We have crossed trained our fitters
- Working with our logistics teams, we have made improvements in how parts are delivered to the engine build line - removed packaging and bespoke workstation kitting
- We have completed workplace organisation improvements to improve efficiency

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN IMPROVEMENT **BUSINESS AVIATION GROWTH**

Trent 1000 HP **Turbine Disc lead** time

33% reduction in lead time, 12 week to 8 week

£1.3m inventory saving

Trent 1000 HP Turbine Disc

- We implemented a pull system at the bottleneck operation of broaching, optimising batch sizes to minimise set up time loss and create better flow
- We consolidated our inspection operations from 8 to 5 to reduce the losses waiting for parts to cool prior to inspection
- We focussed on driving Zero Defects to enable better flow of parts
- We improved the flow of information across shared resource areas to gain better co-ordination

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN IMPROVEMENT **BUSINESS AVIATION GROWTH**

Turbine blade wax assembly lead time

Lead time reduction from **7 days to 2 days**

750 part inventory saving - **£0.3M**

56% rate increase

15% productivity improvement - **£1.4M**

© Dassaul

Wax Assembly Lead Time Reduction

- We have interactive value stream mapping with live data from all operators on each process showing variations on actual times versus standard
- We have implemented new tooling design to remove downstream operations
- We have implemented new tooling to increase the asset availability of the constraint operation
- · We have reduced inspection requirements

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

Electronics Cell productivity improvement

80% productivity improvement - **£600k**

£200k inventory saving

Electronics Cell Lean Transformation

- We have increased machine reliability of the production line
- We have improved the performance of the automated inspection equipment
- We have improved product flow through changes in production and logistics by delivering material to the required stage of the production line
- We are moving to single piece flow and standard work to deliver further inventory and productivity benefits

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN
IMPROVEMENT

BUSINESS AVIATION GROWTH

Fan Blade Singapore lead time

52 days to 41 day reduction in fan blade lead time

£2.9m inventory saving

Fan Blade Lead Time Reduction

- We aligned our Vision across all manufacturing cells to deliver lead time reduction
- We have delivered waste reduction across the manufacturing Value Stream
- We improved machine uptime through improvement activity
- We focussed on improving quality to enable better flow of parts
- We increased flexibility of workforce through multi-skilling

MAXIMISE SERVICES RECEIPTS

SERVICES COST REDUCTION

OE MARGIN IMPROVEMENT **BUSINESS AVIATION GROWTH**

Appendix 3 Civil Aerospace Facts & Figures

Our company

Rolls-Royce pioneers cutting-edge technologies that deliver clean, safe and competitive solutions to meet our planet's vital power needs. Our purpose is to pioneer the power that matters to connect, power and protect society.

At Rolls-Royce, we believe in the positive, transforming potential of technology

Our business groups

Civil

Power Systems

Electrical

SMR

15,400

40,000

20,000

16,000

NEW MARKET

£52m

NEW MARKET

£16m

R&D to enter the UK GDA process

total employees

Pioneering sustainable power for civil aerospace

35 types of commercial aircraft powered by us

15,400 installed base around the

17,900 employees

£4,536m underlying revenue

Business aviation 21%

Underlying revenue mix

Large

engine 72%

Civil Aerospace

Our Civil Aerospace business is a major manufacturer of aero engines for the large commercial aircraft, regional jet and business aviation markets.

The business uses its engineering expertise, in-depth knowledge and capabilities to provide through-life support solutions for its customers.

£4,536m
Underlying revenue 1

£172m

Underlying operating loss ¹

V2500 3% Regional 4%

Business aviation 21%

Underlying revenue mix

Large engine 72%

Leaders in Airlines

Civil Aerospace

*combined in-service and storage

Includes all RB211, Trent, Regional and Business Aviation engines

 \sim $\frac{7}{400}$

~9,100

Aircraft in airline service*

450m+

Engine Flying Hours

Leading products in Core Markets

Business Aviation Portfolio

In Service

- **BR710** | Bombardier Global Express, 5000 & 6000 Gulfstream V. G500 & G550
- AE3007 | Embraer ERJ 145/140/135

In Production

- Pearl 15 | Bombardier 5500/6500

In Flight-test & Development

- Pearl 10X | Dassault Falcon X
- Pearl 700 | Gulfstream G700 / G800

Widebody Portfolio

Customer

Manufacture

Service

Transition

~4000

large engine

Trent 700

Powers more A330

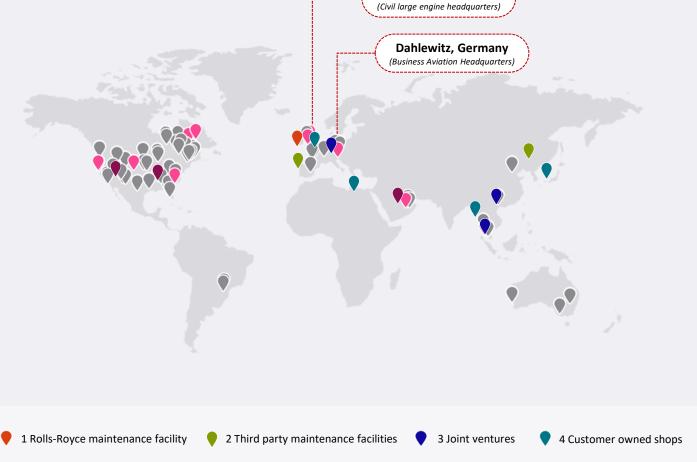
~25%

130

A330

>900

63%



Our Global Service Network

Our global network allows people, parts, tools and engines to move quickly and admin free around the world to cater to customer needs

Derby, United Kingdom

65 On-Wing Care

Strategic procurement is aligned to four categories of spend

RAW MATERIAL & FORMING

DESIGN MAKE

50 suppliers £0.7bn

150 suppliers £0.5 bn

20.5bnAECC

100 suppliers
£0.5bn

Parker-Hannifin
Collins

PCC ATI Howmet

Senior Group Forgital Group

Hanwha

ITP Schaeffler

Safran

Directed buy model for scale and control

Consolidating spend into best suppliers

Value from market competitiveness

Partner on key

technology

Product designed in to engine system

Long term contracts and elementals hedging Driving capability and investment to develop technology

Exit poor performers

Strategic partners technology suppliers with important IP

D.E

Focus on Vertical integration - performance crucial forge and machine

_ Ex

Life of type contracts

OUR LEADERSHIP TEAM

2021 Full Year Results

Civil Aerospace Supplementary Data

Civil Aerospace

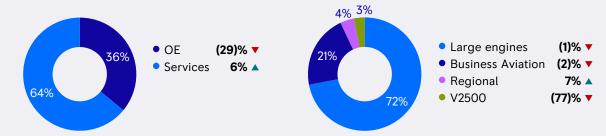
- Improved operational gearing with restructured cost base
- Significant value in installed base of around 5,700 large and 9,700 regional and business aviation engines
- Airbus A350 freighter is a great opportunity for Trent XWB with 58 additional engine orders since its launch
- Two key new selections in Business Aviation with our Pearl 10X and Pearl 700

Civil Aerospace

Large engine KPIs

195 OE deliveries

208 Major shop visits


7.4m LTSA Engine flying hours (EFH)

Underlying results £m	FY 2021	FY 2020 ¹	Organic Change	%
Revenue	4,536	5,068	(491)	(10)%
Gross profit / (loss)	474	(1,987)	2,477	
Gross margin %	10.4%	(39.2)%	49.9%pt	
Operating profit / (loss)	(172)	(2,535)	2,371	94%
Operating margin %	(3.8)%	(50.0)%	46.4%pt	
Trading cash flow	(1,670)	(4,510)	2,840	

Reduction in engine deliveries partly offset by improvement in LTSA catch up

Restructured business with smaller footprint and leaner workforce and significant swing in LTSA catch ups

Underlying revenue splits

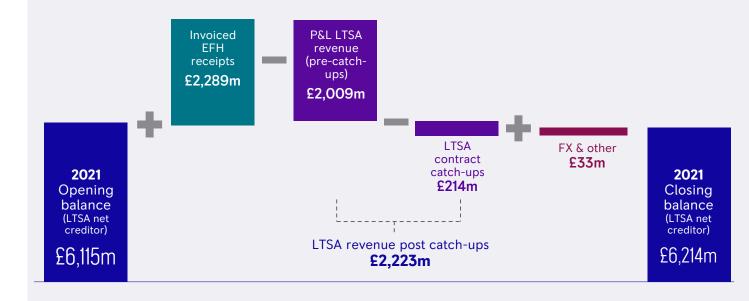
¹ The underlying results for Civil Aerospace for 31 December 2020 have been restated to reflect the changes to activity during 2021 due to the transfer of the Hucknall site and associated fabrications activities to ITP Aero, and also to reclassify the results of the Group's SMR and electrical activities as New Markets.

LTSA balance: Drivers of Civil LTSA

Drivers of Civil LTS balance change

Deferred revenue

reflects difference between invoiced EFH receipts and P&L revenues traded


Invoiced EFH receipts

Reflects invoiced EFH receipts on long-term contracts across **entire** Civil LTSA-covered fleet

P&L revenue

Driven by cost (e.g. shop visits) across large engine, business aviation and regional fleets.

Recognised by contract, as costs incurred, at relevant contract margins

Civil Aerospace revenues by engine type

COVID-19 impact seen across OE and Services

£m	FY 2021	FY 2020	Organic change ¹
Original Equipment	1,612	2,278	(29%)
Large engine	1,297	1,696	(23%)
Business aviation	310	574	(44%)
V2500	5	8	(38%)
Service	2,924	2,790	6%
Large engine	1,958	1,608	22%
Business aviation	654	444	52%
Regional	187	184	7%
V2500	125	554	(77%)
TOTAL	4,536	5,068	(10%)

Trent engine products

Leading widebody backlog market share

£m	Airframe	Market share*	Engines in service	Engines on order
Trent 7000	Airbus A330neo	100%	130	550
Trent XWB	Airbus A350	100%	764	859
Trent 1000	Boeing 787	33%	604	122
Trent 900	Airbus A380	48%	168	1
Trent 800	Boeing 777	40%	176	0
Trent 700	Airbus A330	60%	1,146	0
Trent 500	Airbus A340	100%	92	0
			3,080	1,532

^{*} Share of total firm and announced programme sales with an engine decision (excludes cancelled orders)

Civil Aerospace engine deliveries

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
By engine																			
RB211 22B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RB211 524	2	5	7	0	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0
RB211 535	14	6	0	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
RB211 Total	16	11	7	2	5	5	1	0	0	0	0	0	0	0	0	0	0	0	0
Trent 500	88	115	88	97	45	45	57	16	1	8	0	0	0	0	0	0	0	0	0
Trent 700	35	30	54	59	75	88	125	139	135	157	181	184	140	88	110	63	10	2	2
Trent 800	30	15	21	25	10	7	9	0	0	0	0	0	0	0	0	0	0	0	0
Trent 900				20	10	48	33	30	70	64	42	35	6	30	67	44	34	15	1
Trent 1000									18	46	59	79	106	122	109	125	126	82	12
Trent XWB-84												13	56	117	196	184	178	109	120
Trent XWB-97															1	45	56	34	29
Trent 7000																8	106	22	31
Trent	153	160	163	201	140	188	224	185	224	275	282	311	308	357	483	469	510	264	195
Civil Large Engines	169	171	170	203	145	193	225	185	224	275	282	311	308	357	483	469	510	264	195
Tay	48	43	55	66	80	92	68	51	57	60	67	46	38	28	2	0	0	0	0
AE3007	217	242	168	113	135	135	32	55	31	43	78	48	34	20	8	10	4	0	0
BR700	96	131	161	155	183	216	172	184	232	290	326	334	332	244	190	205	191	112	70
Pearl																2	24	72	44
Civil Small Engines	361	416	384	334	398	443	272	290	320	393	471	428	404	292	200	217	219	184	114
V2500*	216	237	327	319	308	351	347	371	418	220	0	0	0	0	0	0	0	0	0
Civil Total	746	824	881	856	851	987	844	846	962	888	753	739	712	649	683	686	729	448	309

Civil Aerospace engine in-service installed fleet**

Fleet data from Cirium excludes aircraft **temporarily parked** due to COVID-19

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
By engine	2003	2004	2003	2000	2007	2000	2009	2010	2011	2012	2013	2014	2013	2010	2017	2010	2019	2020	202
RB211 22B	48	36	36	12	15	9	12	9	6	6	3	3	3	3	3	3	3	3	3
RB211 524	829	815	796	791	769	706	643	638	617	530	455	352	302	278	266	242	210	82	80
RB211 535	1.154	1,192	1,168	1.174	1.158	1.102	1.078	1.056	1.052	1.028	1.026	1.012	908	868	826	850	824	576	658
RB211 Total	2.031	2.043	2.000	1.977	1.942	1.817	1.733	1.703	1.675	1.564	1.484	1,367	1.213	1.149	1.095	1.095	1.037	661	741
Trent 500	120	212	292	380	412	432	464	492	480	452	440	388	352	336	280	284	240	68	92
Trent 700	234	264	306	364	422	492	590	696	816	948	1,114	1,288	1,388	1,460	1,590	1,636	1,606	1,054	1,146
Trent 800	376	392	406	430	444	442	448	450	444	446	436	422	362	352	330	334	320	134	176
Trent 900	0	0	0	0	4	36	60	80	140	208	244	280	304	332	360	400	428	68	168
Trent 1000	0	0	0	0	0	0	0	0	6	44	84	164	260	384	476	546	658	538	604
Trent XWB-84	0	0	0	0	0	0	0	0	0	0	0	2	30	124	278	432	590	562	666
Trent XWB-97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28	70	96	98
Trent 7000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	80	90	130
Trent	730	868	1,004	1,174	1,282	1,402	1,562	1,718	1,886	2,098	2,318	2,544	2,696	2,988	3,314	3,662	3,992	2,610	3,080
Civil Large Engines	2,761	2,911	3,004	3,151	3,224	3,219	3,295	3,421	3,561	3,662	3,802	3,911	3,909	4,137	4,409	4,757	5,029	3,271	3,821
Spey	1,090	1,024	992	946	914	864	802	760	702	632	580	506	460	430	404	360	284	252	236
Tay	1,599	1,572	1,623	1,755	1,769	1,825	1,861	1,869	1,917	1,969	2,019	2,011	2,035	2,027	1,993	2,009	1,946	1,892	1,866
AE3007	1,934	2,164	2,328	2,458	2,564	2,520	2,528	2,562	2,550	2,544	2,598	2,534	2,468	2,326	2,302	2,448	2,472	2,028	2,124
BR700	864	990	1,144	1,272	1,446	1,560	1,752	1,910	2,128	2,362	2,696	2,964	3,388	3,642	3,858	4,098	4,322	4,314	4,382
Pearl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	84
Civil Small Engines	5,487	5,750	6,087	6,431	6,693	6,769	6,943	7,101	7,297	7,507	7,893	8,015	8,351	8,425	8,557	8,915	9,024	8,522	8,692
V2500*	930	1,054	1,196	1,348	1,492	1,613	1,722	1,852	2,002	0	0	0	0	0	0	0	0	0	0
Civil Total	9,178	9,715	10,287	10,930	11,409	11,601	11,960	12,374	12,860	11,169	11,695	11,926	12,260	12,562	12,966	13,672	14,053	11,793	12,513
Fleet growth	8%	6%	6%	6%	4%	2%	3%	3%	4%	-13%	5%	2%	3%	2%	3%	5%	3%	-16%	6%

^{* 50%} of the total V2500 fleet included

^{**} Installed engine base is net of retirements and excludes aircraft which are parked or in storage

Civil Aerospace in-service thrust base (millions lbs)**

Fleet data from Cirium excludes aircraft **temporarily parked** due to COVID-19

		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
By engine	Thrust per engine (lbs)																			
RB211 22B	60,000	3	2	2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
RB211 524	60,000	50	49	48	47	46	42	39	38	37	32	27	21	18	17	16	15	13	5	5
RB211 535	40,000	46	48	47	47	46	44	43	42	42	41	41	40	36	35	33	34	33	23	26
RB211 Total		99	99	97	95	93	87	82	81	79	73	69	62	55	52	49	49	46	28	31
Trent 500	56,000	7	12	16	21	23	24	26	28	27	25	25	22	20	19	16	16	13	4	5
Trent 700	72,000	17	19	22	26	30	35	42	50	59	68	80	93	100	105	114	118	116	76	83
Trent 800	92,000	35	36	37	40	41	41	41	41	41	41	40	39	33	32	30	31	29	12	16
Trent 900	70,000	0	0	0	0	0	3	4	6	10	15	17	20	21	23	25	28	30	5	12
Trent 1000	71,000	0	0	0	0	0	0	0	0	0	3	6	12	18	27	34	39	47	38	43
Trent XWB-84	84,000	0	0	0	0	0	0	0	0	0	0	0	0	3	10	23	36	50	47	56
Trent XWB-97	97,000														0	0	3	7	9	10
Trent 7000	72,000														0	0	0	6	7	9
Trent		58	67	76	87	95	103	114	125	137	152	168	185	196	217	243	270	297	198	233
Civil Large Eng	ines	157	166	172	182	188	190	196	206	216	226	237	247	251	269	292	319	343	226	265
Spey	11,000	12	11	11	10	10	10	9	8	8	7	6	6	5	5	4	4	3	3	3
Tay	15,000	24	24	24	26	27	27	28	28	29	30	30	30	31	30	30	30	29	28	28
AE3007	7,500	15	16	17	18	19	19	19	19	19	19	19	19	19	17	17	18	18	15	16
BR700	15,000	13	15	17	19	22	23	26	29	32	35	40	44	51	55	58	61	65	65	66
Pearl	15,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Civil Small Eng	ines	63	66	70	74	78	79	82	84	88	91	97	99	105	107	109	114	116	112	114
V2500*	27,500	26	29	33	37	41	44	47	51	55	0	0	0	0	0	0	0	0	0	0
Civil Total		246	261	275	294	306	313	326	341	359	317	333	346	356	376	402	433	459	338	378
Thrust Growth		9%	6%	6%	7 %	4%	2%	4%	5%	5%	-12%	5%	4%	3%	6%	7%	8%	6%	-26%	12%

^{*} Share of total firm and announced programme sales with an engine decision (excludes cancelled orders)

Safe harbour statement

This announcement contains certain forward-looking statements. These forward-looking statements can be identified by the fact that they do not relate only to historical or current facts. In particular, all statements that express forecasts, expectations and projections with respect to future matters, including trends in results of operations, margins, growth rates, overall market trends, the impact of interest or exchange rates, the availability of financing to the Company, anticipated cost savings or synergies and the completion of the Company's strategic transactions, are forward-looking statements. By their nature, these statements and forecasts involve risk and uncertainty because they relate to events and depend on circumstances that may or may not occur in the future. There are a number of factors that could cause actual results or developments to differ materially from those expressed or implied by these forward-looking statements and forecasts. The forwardlooking statements reflect the knowledge and information available at the date of preparation of this announcement, and will not be updated during the year. Nothing in this announcement should be construed as a profit forecast. All figures are on an underlying basis unless otherwise stated - for the definition see note 2 to the condensed consolidated financial statements section of the 2021 Full Year Results Statement

Contacts

Isabel Green

Head of Investor Relations isabel.green@rolls-royce.com

Elena Prentice

Investor Relations & ESG Manager elena.prentice@rolls-royce.com

Sophie Parry Investor Relations Manager sophie.parry@rolls-royce.com

Paul Morris

Investor Relations Associate

paul.morris3@rolls-royce.com

