Naming ceremony for HMS Queen Elizabeth

Naming ceremony of HMS Queen Elizabeth

Friday 4th July saw the naming ceremony for the Royal Navy’s new aircraft carrier HMS Queen Elizabeth. Built at the Rosyth shipyard in Scotland, and weighing in at 65,000 tonnes she, and sister ship HMS Prince of Wales will be the largest naval ships in Europe. Rolls-Royce is working in an alliance with Thales, L-3 and GE delivering the power and propulsion for both ships.

Our equipment includes the MT30 – the world’s most power-dense marine gas turbine. A pair of MT30s each rated at 36 megawatts, will power these magnificent ships. We are also supplying the giant propellers that measure 7 metres in diameter and produce around 50,000 horsepower. And we’re supplying shaft lines that drive the propellers, the low voltage electrical systems, steering gear and rudders.

Our Neptune stabilising fins, which deploy under the water in rough seas, will steady the ships during aircraft operations.

This was a hugely proud day for the Rolls-Royce team. We congratulate everyone at the Aircraft Carrier Alliance, MoD and the Royal Navy, and we are privileged to have been a part of this historic day.

Thinking the unthinkable

Sometimes what was unthinkable yesterday is tomorrow’s reality. So now it is time to consider a roadmap to unmanned vessels of various types. Steps have already been taken, mainly in the naval area. On the way, certain functions will be moved ashore.

Engine/equipment monitoring and some underwater operations in the offshore sector could be the first. A growing number of vessels are already equipped with cameras that can see at night and through fog and snow, and have systems to transmit large volumes of data.

Given that the technology is in place, is now the time to move some operations ashore? Is it better to have a crew of 20 sailing in a gale in the North Sea, or say five in a control room on shore?

When ‘fleet optimisation’ is considered, the advantages compound. The same person can monitor and steer many ships. As conditions ashore are often preferred, it will also help retain qualified and competent crew, and is safer.

Many facilities and systems on board are only there to ensure that the crew is kept fed, safe, and comfortable. Eliminate or reduce the need for people, and vessels could be radically simplified. Attitudes and ways of working will need to change, but safe operation is possible, particularly for vessels running between two or three fixed points.

Shipping’s approach is usually about complying to regulations in the most cost efficient way while addressing the key cost issues of fuel, finance, cargo handling and crew. They can all be influenced by holistic ship design. In the future, we must not think of a ship as a number of separate processes or systems, but as a whole where all aspects affect the other. Only by thinking the unthinkable can we truly affect costs.

Want to learn more?

Download the full article Link opens in a new window 


Related links